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Introduction

This talk is about dimer tilings of Z3.

The main goal is to explain how to generalize the large deviation principle
for dimer tilings in Z2 by Cohn, Kenyon, and Propp [1].

There are two main challenges that make studying dimers in 3D different
from 2D:

• There is no height function correspondence for dimer tilings of Z3.
• There are no (known) formulas for the partition function, surface
tension, etc for tilings of Z3. (And the model is probably not integrable.)

1 / 27



Introduction

This talk is about dimer tilings of Z3.

The main goal is to explain how to generalize the large deviation principle
for dimer tilings in Z2 by Cohn, Kenyon, and Propp [1].

There are two main challenges that make studying dimers in 3D different
from 2D:

• There is no height function correspondence for dimer tilings of Z3.
• There are no (known) formulas for the partition function, surface
tension, etc for tilings of Z3. (And the model is probably not integrable.)

1 / 27



Plan for the talk

• A bit more about these two ways that studying the dimer model in 3D is
different from 2D

• Set up for an LDP and analogous result in 2D
• Main theorems in 3D
• Simulations!
• A few methods that we use in the proofs in 3D.
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Correspondence: dimer tilings and discrete vector fields

For any d, Zd is a bipartite lattice, with underlying black and white
checkerboard.

The colors of the dimers represent the cardinal direction of the dimer (north,
south, east, west, up, down for d = 3), viewed as a vector from its white cube
to its black cube.

There is a correspondence between 1) a dimer tiling τ of Zd and 2) a discrete
vector field vτ defined by: for each edge e of Zd oriented from white to black,

vτ (e) =





1 e ∈ τ

0 e "∈ τ
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Height function replacement: divergence free discrete vector field

Observation: compute divergences of vτ .

div vτ (x) =
∑

e!x
oriented out of x

vτ (e) =





+1 x is white
−1 x is black.

Upshot: divergences depend only on the parity of x.

Subtracting a constant reference flow r(e) = 1/(2d) for all e ∈ Zd, a dimer
tiling τ corresponds to a divergence free discrete vector field fτ which we
call the tiling flow.

When d = 3 this is

fτ (e) =





1− 1/6 = 5/6 e ∈ τ

−1/6 e "∈ τ

Relation to the height function in 2D: in 2D, a divergence-free flow is dual to
a curl-free flow, which is then the gradient of a function. The curl-free dual
of fτ in 2D is ∇h, where h is the height function.

The main intuition throughout this talk is to think of a dimer tiling as a flow.
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Remark: non-intersecting paths and (non)-integrability?

One of the ways to see that the dimer model on Z2 is integrable is via the
bijection with non-intersecting paths in Z2 by overlaying a tiling (red) with a
brickwork tiling (black).

There is an analogous bijection between dimer tilings of Z3 and
non-intersecting paths in Z3. But these paths are not ordered, they can be
braided in various ways, etc.
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Part II: set up for an LDP and 2D context



Set up for large deviations in 2D or 3D

Fix, for dimension d = 2 or 3:

• a “reasonable” compact region R ⊂ Rd and some boundary condition b
(boundary condition specified e.g. with flow or height function)

• a sequence of grid regions Rn ⊂ 1
nZ

d approximating R with the boundary
conditions of Rn converging to b as n→ ∞.

Question: what do uniform random dimer tilings of Rn look like in the
fine-mesh limit as n→ ∞?

Using the correspondence, a dimer tiling corresponds to a discrete
divergence free flow on 1

nZ
d, the fine-mesh limit as n→ ∞ should be some

measurable divergence free flow.

Large deviations means quantifying: given a deterministic flow g, what is the
probability that a tiling of Rn is close to g as n→ ∞? There is a limit shape if
is there is one flow that random tilings concentrate on as n→ ∞.
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Ingredients of an LDP

R
Rn

In general, a large deviation principle (LDP) needs:

1. A sequence of probability measures (ρn)n≥1 that the large deviation
principle is about.

2. A topology (to say what the fine-mesh limits are, and to compare things).
3. A rate function I(·), where I measures, for any fixed δ > 0,

“ ρn(tiling flow fτ is within δ of deterministic flow g) ≈ exp(−nd · I(g))”
4. When the rate function I(·) has a unique minimizer and (ρn)n≥1 satisfy
an LDP, then the ρn-probability that a random tiling is close to minimizer
goes to 1 as n→ ∞. The minimizer is called the limit shape.

5. Main step for proving that I(·) has a unique minimizer is usually to prove
that I(·) is strictly convex.
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Context: LDP and limit shape theorems in 2D by Cohn, Kenyon and Propp

Fix R ⊂ R2 compact simply connected region, hb boundary height function.
Choose Rn ⊂ 1

nZ
2 regions approximating R such that boundary values of

height functions for tilings of Rn converge to hb.

• Measures: ρn is uniform measure on tilings of Rn.
• Topology: sup norm on corresponding height functions.
• Fine-mesh limits of height functions as n→ ∞: asymptotic height
functions AH(R,hb), i.e. 2-Lipschitz functions.

• Rate function: I : AH(R,hb) → [0,∞) has the form

I(h) = C− Ent(∇h) = C− 1
area(R)

∫

R
ent2(∇h(x)) dx.
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Understanding the rate function in 2D

I(h) = C− Ent(∇h) = C− 1
area(R)

∫

R
ent2(∇h(x)) dx.

The entropy function ent2 : {(s, t) : |s|+ |t| ≤ 2} → [0,∞) can be computed
explicitly using Kasteleyn theory (linear algebra), and this is the main tool in
2D for showing strict convexity and proving that I has a unique minimizer
with each boundary condition hb.

The formula is

ent2(s1, s2) =
4∑

i=1
L(πpi),

where pi are determined by (s1, s2) with the equations p1 + p2 + p3 + p4 = 1,
s1 = 2(p1 − p2), s2 = 2(p3 − p4), and sin(πp1) sin(πp2) = sin(πp3) sin(πp4) and
L(z) =

∫ z
0 log |2 sin t| dt is the Lobachevsky function.
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Part III: moving to three dimensions



LDP and limit shape in 3D

Need to explain:

• Measures ρn;
• Topology for comparing tilings, and corresponding fine-mesh limits
[different from 2D since we don’t have a height function]

• Rate function I [methods to understand this are different from 2D
because we do not have a formula for it]

Will explain the first two, then state the main theorems in 3D. After that, will
describe the rate function. (Then show simulations, and say a little bit about
our methods.)
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Topology in 3D: use tiling flows

Recall that any dimension d, there is a correspondence
{
dimer tilings τ of Zd

}
⇐⇒

{
div free discrete flows fτ

}
.

The corresponding flow is called a tiling flow.

When d = 3, for each edge e of Z3 oriented from white to black,

fτ (e) =





1− 1/6 = 5/6 e ∈ τ

−1/6 e "∈ τ

Topology: induced by a metric dW on tiling flows, where dW is a version of
Wasserstein distance.

Intuitive description of dW: two flows are close if we can transform one flow
into another with low “cost” where “cost” is the minimum sum of 1) amount
of flow moved times distance moved, 2) flow added, 3) flow deleted to
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Fine-mesh limits

The fine-mesh limits as n→ ∞ of tiling flows in this topology are asymptotic
flows, which are vector fields on R that are

• measurable
• divergence-free (as a distribution)
• valued in the mean-current octahedron

O = {s = (s1, s2, s3) : |s1|+ |s2|+ |s3| ≤ 1}.

A element s ∈ O is called a mean current.
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Measures ρn: hard and soft boundary conditions

Fix a nice region R ⊂ R3 (compact, closure of a domain, ∂R piecewise
smooth) and b a boundary value on ∂R.

There are some subtleties with hard boundary conditions in 3D, so have two
ways of specifying boundary conditions.

Like with height functions, τ1, τ2 are tilings of the same region Rn ⊂ Z3 if and
only if their tiling flows have the same boundary values (i.e., same flow of
vector field through boundary).

Hard boundary (HB): fix a sequence of regions Rn ⊂ 1
nZ

3 with boundary
values bn approximating b and let ρn be uniform measure on dimer tilings of
Rn.

Soft boundary (SB): choose a sequence of “thresholds” (θn)n≥0 with θn → 0
slowly enough and let ρn be uniform measure on free-boundary tilings of
R ∩ 1

nZ
3 with boundary values within θn of b.
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Main theorems in 3D summarized

To state the versions of the theorem, need to define some mild conditions
for region/boundary value pairs (R, b):

• (R, b) is flexible if for every x ∈ R, there exists an open set U - x and an
extension g of b such that g(U) ⊂ Int(O).

• (R, b) is semi-flexible if for every x ∈ R, there exists an open set U - x
and an extension g of b such that g(U) ⊂ O \ E (E is the edges of ∂O).

• Otherwise (R, b) is rigid.

Theorems (Chandgotia, Sheffield, W.) Assume that R ⊂ R3 is the closure of a
connected domain and ∂R is piecewise smooth.

(R, b) SB LDP (ρn) Ent maximizer/Ib minimizer unique HB LDP (ρn)
rigid yes not known no

semi-flexible yes yes no
flexible yes yes yes

The hard boundary LDP is provably not true in full generality in 3D; there
exists (R, b) semi-flexible where the HB LDP is false.
For (R, b) rigid, a weak uniqueness holds. Namely, if f1, f2 are both Ent maximizers, then on
the set A where they differ they are both valued in E .
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LDP rate function

For either (ρn)n≥1 (soft boundary) or (ρn)n≥1 (hard boundary), the rate
function when an LDP holds is

Ib(g) = C− Ent3(g).

Like 2D, the entropy functional Ent3 is an average of a local entropy function
ent3:

Ent3(g) =
1

Vol(R)

∫

R
ent3(g(x))dx.

The local entropy function ent = ent3 : O → [0,∞) is defined more
abstractly as:

ent(s) = max
µ∈Ps

h(µ).

Here h(µ) is specific entropy (limit of Shannon entropy per site) and Ps is
“measures with mean current s”, i.e. the set of measures on dimer tilings of
Z3 which are invariant under even translations (these are the translations
that preserve the direction of flow) such that the µ-expected flow through
the origin is s ∈ O.
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Dictionary between 2D LDP and 3D LDP set ups

2D 3D
compact region R that
is...

simply connected [1],
multiply connected [3]

closure of connected
domain, ∂R piecewise

smooth
object associated to
tiling τ

height function h tiling flow fτ

topology (to compare
tilings)

sup norm on height
functions

Wasserstein metric dW
on tiling flows

limits of discrete
objects

asymptotic height
functions: 2-Lipschitz

functions

asymptotic flows:
div-free meas. vector
fields valued in O

rate function C2 − Ent2(∇h) C3 − Ent3(fτ )

R

$
1/n

free-boundary tiling
⌧

R
Rn
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Part IV: simulations



Simulations: aztechedron and slices
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https://math.mit.edu/~wolframc/aztec200.gif


Simulations: pyramid and slices
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https://math.mit.edu/~wolframc/semipyramidwithcircle200.gif


Part V: a few methods



A few methods

Will say a little bit about two key pieces in our arguments:

• patching theorem: essential “locality” property of tilings. Says that if
two tilings τ1, τ2 have flows that approximate the same constant flow
s ∈ Int(O), then a size-n finite piece of τ2 be “patched in” to τ1 by tiling a
thin annulus between them for n large enough.

• In 2D, patching is proved using Lipschitz extension theorems for height
functions. Our arguments in 3D are very different and more
combinatorial.

• strict convexity of the rate function Ib (more precisely, strict concavity of
ent) and how to understand Ib without formulas.

19 / 27



A few methods

Will say a little bit about two key pieces in our arguments:

• patching theorem: essential “locality” property of tilings. Says that if
two tilings τ1, τ2 have flows that approximate the same constant flow
s ∈ Int(O), then a size-n finite piece of τ2 be “patched in” to τ1 by tiling a
thin annulus between them for n large enough.

Tiles from ⌧2

Tiles from ⌧1

Region to be filled in

• In 2D, patching is proved using Lipschitz extension theorems for height
functions. Our arguments in 3D are very different and more
combinatorial.

• strict convexity of the rate function Ib (more precisely, strict concavity of
ent) and how to understand Ib without formulas.

19 / 27



A few methods

Will say a little bit about two key pieces in our arguments:

• patching theorem: essential “locality” property of tilings. Says that if
two tilings τ1, τ2 have flows that approximate the same constant flow
s ∈ Int(O), then a size-n finite piece of τ2 be “patched in” to τ1 by tiling a
thin annulus between them for n large enough.

Tiles from ⌧2

Tiles from ⌧1

Region to be filled in

• In 2D, patching is proved using Lipschitz extension theorems for height
functions. Our arguments in 3D are very different and more
combinatorial.

• strict convexity of the rate function Ib (more precisely, strict concavity of
ent) and how to understand Ib without formulas.

19 / 27



A few methods

Will say a little bit about two key pieces in our arguments:

• patching theorem: essential “locality” property of tilings. Says that if
two tilings τ1, τ2 have flows that approximate the same constant flow
s ∈ Int(O), then a size-n finite piece of τ2 be “patched in” to τ1 by tiling a
thin annulus between them for n large enough.

Tiles from ⌧2

Tiles from ⌧1

Region to be filled in

• In 2D, patching is proved using Lipschitz extension theorems for height
functions. Our arguments in 3D are very different and more
combinatorial.

• strict convexity of the rate function Ib (more precisely, strict concavity of
ent) and how to understand Ib without formulas.

19 / 27



Patching: more precisely

Let Bn = [−n,n]3 and fix δ > 0. If two tilings τ1, τ2 of Z3 approximate the
constant flow s ∈ Int(O), how can we show that we can “patch them
together” with τ1 outside Bn to τ2 inside B(1−δ)n by tiling the annulus
An = Bn \ B(1−δ)n between them?

In other words, under what conditions is an annular region like the one
above exactly tileable by dimers?
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Hall’s matching theorem

Necessary condition: a dimer contains 1 black cube and 1 white cube, so the
region R needs to have white(R) = black(R). We call this balanced.

Hall’s matching theorem [2] gives a necessary and sufficient condition:

Theorem. A balanced region R ⊂ Z3 is tileable by dimers if and only if there
is no counterexample set U ⊂ R, i.e. no set of cubes which has
white(U) > black(U), despite having only black cubes along its boundary
within R.

To prove the patching theorem, we show that there are no counterexamples
to tileability of An when n is large enough and apply Hall’s matching theorem.
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Understanding the rate function Ib

Unlike in 2D, we do not have a formula for ent(s) in Int(O).

To prove that the rate function

Ib(g) = C− Ent(g) = C− 1
Vol(R)

∫

R
ent(g(x)) dx

has a unique minimizer, one of the important steps is to show that ent(s) is
strictly concave on O \ E , where E is the edges of O.

Like in 2D, ent |E≡ 0, so it is not strictly concave on E . (This is why we need
the semi-flexible condition to prove that the Ent maximizer is unique.)

Without a formula for ent we need “soft arguments” for strict concavity. The
main idea, for s ∈ Int(O), is a method called chain swapping.
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main idea, for s ∈ Int(O), is a method called chain swapping.
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Gibbs measures and entropy

Before explaining chain swapping, want to explain some background about
Gibbs measures.

A measure µ is Gibbs if for any finite region B, µ conditional on a tiling σ of
Z3 \ B is uniform on tilings τ of B extending σ.

Gibbs measures have a special relationship with entropy.

• Classical result [4]: specific entropy h(·) is maximized by Gibbs measure.
• Straightforward to extend this to say that

ent(s) = max
µ∈Ps

h(µ),

is realized by a Gibbs measure of mean current s.
• Corollary of the patching theorem: if µ1, µ2 are ergodic Gibbs measures
(EGMs) of the same mean current s ∈ Int(O), then h(µ1) = h(µ2).

Idea with chain swapping: uses two measures µ1, µ2 of mean currents s1, s2
to construct new two measures with mean currents (s1 + s2)/2 and the same
total entropy, but then show that this breaks the Gibbs property.
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Chain swapping and ent(s) for s ∈ Int(O)

Let µ = (µ1, µ2) be a measure on pairs of dimer tilings which is invariant
under even translations, sample (τ1, τ2) from µ. The union τ1 ∪ τ2 is a
collection of double tiles, finite loops, and infinite paths.

Chain swapping: for each infinite path “of nonzero slope” ( ⊂ (τ1, τ2), with
independent probability 1/2 we swap the tiles from τ1, τ2 to construct a new
pair of tilings (τ ′

1 , τ
′
2). This defines a new swapped measure µ′ = (µ′

1, µ
′
2).
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Chain swapping to prove strict concavity on Int(O)

Suppose µ is an erogdic coupling of ergodic measures µ1, µ2 on dimer tilings,
with mean currents s(µ1) "= s(µ2). Let µ′ be the swapped measure, with
marginals µ′

1, µ
′
2. Chain swapping...

• Preserves ergodicity: µ′ and hence µ′
1, µ

′
2 are ergodic.

• Preserves total entropy: h(µ1) + h(µ2) = h(µ) = h(µ′) = h(µ′
1) + h(µ′

2).
• Preserves but redistributes mean current: for i = 1, 2,

s(µ′
i ) =

s(µ1) + s(µ2)
2 .

• BREAKS the Gibbs property: if µ1, µ2 are ergodic Gibbs measures (EGMs),
then µ′

1, µ
′
2 are not Gibbs.

proof* of strict concavity for s ∈ Int(O): Given mean currents s1 "= s2,
s1+s2
2 ∈ Int(O), let µ1, µ2 Gibbs be such that ent(si) = h(µi). Assuming that

µ1, µ2 are EGMs*, then by chain swapping

2ent
(
s1 + s2
2

)
> h(µ′

1) + h(µ′
2) = h(µ1) + h(µ2) = ent(s1) + ent(s2).

*full proof uses case work based on ergodic decompositions (we don’t yet
know that EGMs of every mean current exist) but this is the main idea.
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Thank you for listening!!
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Various open questions...

• Is there is a unique EGM of mean current s for all s ∈ Int(O)?
• What can be said about the interfaces between frozen and liquid
regions in the limit shapes? How big should the fluctuations be?

• Do there exist regions R ⊂ R3 (with ∂R piecewise smooth) and boundary
conditions b where (R, b) has more than one Ent maximizer?

• Now we know a limit shape exists. Are there soft arguments, for
example, for the existence of frozen regions in the limit shape?

• and more...
26 / 27


	Part II: set up for an LDP and 2D context
	Part III: moving to three dimensions
	Part IV: simulations
	Part V: a few methods

