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to motivate the definition of diamond shear coordinates

- Some ideas of proof

See preprint at arXiv:221111497 for more details and references!
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Shears and shear coordinates



Shear in terms of cross ratio

The cross ratio of four points a, b, ¢, d along a circle or line is

(b—a)(d-c)

cr(a,b,c,d) = m

eR.

The cross ratio is invariant under Mobius transformations and has
the symmetry cr(a, b, c,d) = cr(c,d, a, b).

Example. cr(oo, —1,0,2) = X for A € (0, 00).
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The cross ratio of four points a, b, ¢, d along a circle or line is

(b—a)(d-c)

cr(a,b,c,d) = m

eR.

The cross ratio is invariant under Mobius transformations and has
the symmetry cr(a, b, c,d) = cr(c,d, a, b).

o0 -1 0 A
Example. cr(co, —1,0,A) = Afor A € (0,00). s v —p »—>—

Definition. The shear of a quadrilateral Q with vertices a,b,c,d € T
along its diagonal e = (a, ¢) is defined

C s(Q,e) = logcr(a, b, c,d).
V“ A
Y
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Shear in terms of hyperbolic length

The shear s(Q, e) can also be computed as (signed) hyperbolic length:

S(Qv e) = idhyp(mb(e)a md(e))'

Here my(e) is the intersection of the geodesic through b
perpendicular to e and my(e) is the intersection of the geodesic
through d perpendicular to e.

-1 0 A
The shear s(Q, e) measures how the two triangles on either side of e
are glued together to construct Q.

3/22



Farey tessellation

2132 352 0:
5317 385 2 758371535

F = (V,E) tessellation of D starting from 7o = {—1,1,1} generated by
hyperbolic reflections. Vertices V = T N Q?. The dual tree F* (where
each triangle corresponds to a vertex, etc) is a trivalent tree.
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Farey tessellation

F = (V,E) tessellation of D starting from 7o = {—1,1,1} generated by
hyperbolic reflections. Vertices V = T N Q?. The dual tree F* (where
each triangle corresponds to a vertex, etc) is a trivalent tree.

Conjugating to H by a Mobius transformation sending
{-1,1,1} — {0,1,00}, Vis sent to Q. There is an edge (p/q,r/s) € E if
and only if pr — gs = 1, and tessellation is invariant under the action

of PSL(2,Z) action.
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Farey tessellation in D and shears

The Farey quad Q. around e € E is the pair of triangles in F with
diagonal e.

Since F is generated by reflection, in terms of shears
5(Qe,e) =0 Ve cE.
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Tessellation from homeomorphism

A Mobius transformations is determined by its action on three
points, so

Homeo™ (T)/Mob = {h € Homeo™ (T) : h fixes +1,i}.

Given a homeomorphism h fixing 41,1, we can define a tessellation
h(F) which contains the triangle 7o and has vertices h(V) and edges
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Shear coordinates

Definition. If h is a homeomorphism, its shear coordinate s, : E — R

Remark. Not all functions s : E — R encode homeomorphisms.

(There exist shear functions where the image of V is not dense.)
7122



Circle homeomorphisms



Quasisymmetric homemorphisms QS(T)

A map f: D — D is quasiconformal if f solves the Beltrami equation

f? - /’(‘fb

for some Beltrami coefficient p with ||p]]eo < 1.
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Quasisymmetric homemorphisms QS(T)

A map f: D — D is quasiconformal if f solves the Beltrami equation

f? - /’(‘fb

for some Beltrami coefficient p with ||p]]eo < 1.

A homeomorphism h : T — T is quasisymmetric if and only if it is the
boundary value of a quasiconformal map of .

Shears for quasisymmetric maps are totally classified (Saric). One
model of universal Teichmiiller space is QS(T)/Mob, where
Mob = PSU(1,1) is the Mobius transformations preserving the disk.
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Weil-Petersson homeomorphisms WP(T)

Weil-Petersson Teichmuiller space WP(T)/Mob is a subspace of
universal Teichmuller space that has received a lot of interest lately.
The class now has at least 26 definitions, often with L% structure.
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Weil-Petersson Teichmuiller space WP(T)/Mob is a subspace of
universal Teichmuller space that has received a lot of interest lately.
The class now has at least 26 definitions, often with L% structure.

Definition 1. A homeomorphism h : T — T is Weil-Petersson if there
exists an extension f: D — D such that:

- fis quasiconformal, i.e. f solves f; = uf, for p with ||pu]]eo < 1.
- The Beltrami coefficient y is in L? for the hyperbolic metric on
the disk, i.e.

()P .
/D OSERE dA(2) < <.

9/22



Weil-Petersson homeomorphisms WP(T)

Weil-Petersson Teichmuiller space WP(T)/Mob is a subspace of
universal Teichmuller space that has received a lot of interest lately.
The class now has at least 26 definitions, often with L% structure.

Definition 1. A homeomorphism h : T — T is Weil-Petersson if there
exists an extension f: D — D such that:

- fis quasiconformal, i.e. f solves f; = uf, for p with ||pu]]eo < 1.
- The Beltrami coefficient y is in L? for the hyperbolic metric on
the disk, i.e.

(@)l
—————dA(2) < 0.
J, Sy
Definition 2 (Shen). A homoemorphism h is Weil-Petersson if and
only if it is absolutely continuous and logh’ € H'/?, i.e.

//TXT log h'(x Iogh()’

dxdy < oo.
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Weil-Petersson and Holder classes

We define Holder classes

C"*={h:T —T:logh’is a-Holder}.
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Weil-Petersson and Holder classes

We define Holder classes

={h:T — T:loghis a-Holder}.

Corollary (of the H'/? characterization of WP). The inclusion
C"* c WP(T) holds if and only if a > 1/2.

If log h” is a-Holder, then

/| [ ey
TxT TxT

which is finite if and only if 2a — 2 > —1 hence if and only if « > 1/2.

log h'(x Iogh ik
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Square summable shears

We define the set of square summable shear functions

S={s:E>R:Y s(e)’ < oo}

eck
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Square summable shears

We define the set of square summable shear functions

S={s:E>R:Y s(e)’ < oo}

eck

Question. How close is S to WP(T)?

Turns out S is “far” from (much bigger than) WP(T), and this can be
seen by looking at circle homemorphisms with finitely supported
shears.

This will motivate the definition of diamond shear coordinates, and
the space H (square summable diamond shears), which we show is
much closer to WP(T).
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Circle homeomorphisms with
finitely supported shears




Finitely supported is piecewise Mobius

A shear function s : E — R is finitely supported if s(e) # 0 for only
finitely many e € E.

Exqvvxe\a

A finitely supported shear function is always induced by a piecewise
Mobius circle homeomorphism with “breakpoints” in the vertices V of
F.
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Finitely supported shears and Weil-Petersson

Forv eV, fan(v) is the edges e € E incident to v.

Lemma. If h: T — T has s, : E — R finitely supported, TFAE:

1. his Weil Petersson;
2. his C"" with breakpoints in V;

3. The shear function sy, satisfies the finite balance condition, i.e.
forallv eV, > crnnw) s(e) =0.

Note: The shear function s : E — R supported on one edge is not WP.
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Definition of diamond shear

Definition. Fix e € E (with dual edge e*), and let ey, e,, e3, e, be the
edges around Q.. The diamond shear basis element A, corresponds
to the shear function with s(e;) = s(e3) = +1, s(e2) = s(ex) = —1, and
all other shears 0.

JA\ ¢ 18 the shenr coondinede 6{- A piecewt Mibrus WWL}D
w4 pieces.
; D (e*) =1

]

Se,) - S(Qs) =t |

s(eg) =s(eq) =1
Definition. If a homeomorphism h has a shear coordinate s : E — R
such thats =) ... 9¥(e*) Ac then h has diamond shear coordinate

v Ef = R
Note: not all shear functions can be written as diamond shears.
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Finitely supported diamond shears and Weil-Petersson

Lemma. If h has s, finitely supported, then h is Weil-Petersson if and
only if h has a diamond shear coordinate.

Proof sketch. “Pruning the tree”” By the previous Lemma, h is
Weil-Petersson if and only if s, satisfies the finite balanced condition.
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Definition of H

Not all shear functions can be written as diamond shears. We let
P C RE be the subset of shear functions s such that s can be written
in terms of diamond shear coordinates 9, ¥ : P — RE" sends s s 4.

Definition. The set of square summable diamond shears is

H={seP:0=V(s), Y d(e) <o}

e*ek*
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Definition of H

Not all shear functions can be written as diamond shears. We let
P C RE be the subset of shear functions s such that s can be written
in terms of diamond shear coordinates 9, ¥ : P — RE" sends s s 4.

Definition. The set of square summable diamond shears is

H={seP:0=V(s), > () <o}

e*ek*

Remark. From the condition for a shear function to encode a
quasisymmetric homeomorphism, it follows that

H C QS(T).

In particular, all s € H induce homeomorphisms.

16/22



Theorem (SWW).
" CcHCWP(T)CS

if and only if > 1/2.
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then h, converges to h in the Weil-Petersson metric.
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Theorem (SWW).
" CcHCWP(T)CS

if and only if > 1/2.

The space WP(T) has a metric (the Weil-Petersson metric), and H has
a natural topology coming from its ¢ structure.

Theorem (SWW). Suppose that h, (h,)n>1 € H with diamond shear
coordinates 19,49, respectively. If

lim S (9n(e") — () = 0
e*ek*

then h, converges to h in the Weil-Petersson metric.

Corollary. Piecewise-Mobius, C' maps with rational breakpoints are
dense in H and WP(T).
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Proof ideas




Proof ideas: H C WP

Given h € H, we explicitly construct an extension f: D — ID and show
it is quasiconformal and has Beltrami coefficient p € L2(D, dpyp).
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Proof ideas: H C WP

Given h € H, we explicitly construct an extension f: D — ID and show
it is quasiconformal and has Beltrami coefficient p € L2(D, dpyp).

The dual tree 7* subdivides D into cells {C, : v € V}. Based on a
construction by Kahn and Markovic, we construct f extending h that
sends cells to cells.

owm btddﬁd “‘
with vedees =<
ab centos
5 od €51
eo\ges .

Step 1. Extend over F* by hyperbolic stretching.

Step 2. Extend over a single cell C,, v e V.

Step 3. Stitch cells together again.
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Proof ideas: extending over a cell C,

For any v € V, conjugating by appropriate Mobius transformations
H— D,wecansend h:T — Tto¢: R — R fixing oo and C, to Cu.
Suffices to explain how to extend over C...
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Proof ideas: extending over a cell C,

For any v € V, conjugating by appropriate Mobius transformations
H— D, wecansend h: T — Ttoy:R — Rfixing co and C, to Cw..
Suffices to explain how to extend over C...

-3 -2 -1 0 1 2 3 ~(0)

Extension v (conjugate to f) of ¢ sends x + iu(x) (boundary of C.) by
hyperbolic stretching to the curve a(x) + i8(x). We extend over the
rest of the cell on vertical lines:

(X +1iy) = a(x) +i(B(X) — u(x) +y) X+iy € Coo.
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Proof ideas: C"* c H

Analytic definition of diamond shears. If h has a diamond shear
coordinate ¥, and e = (a,b) € E, then
h(a) — h(b)

h(e) = 5 log /(@' (b) ~ log "' 0—

Summability of Farey lengths. Let ¢(a, b) be the length of the shorter
circular arc from a to b.

> #(a,b) < oo

(a,b)ekE

ifand only if r > 1.
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Proof ideas: C"* c H

Analytic definition of diamond shears. If h has a diamond shear
coordinate ¥, and e = (a,b) € E, then
h(a) — h(b)

h(e) = 5 log /(@' (b) ~ log "' 0—

Summability of Farey lengths. Let ¢(a, b) be the length of the shorter
circular arc from a to b.

> #(a,b) < oo
(a,b)ekE
ifand only if r > 1.

Proof sketch. Suppose h € C"®. By the mean value theorem* there
is c € (a,b) so that

In(e) = %(log h(a) — log H'(c)) + %(log H(b) = log H'(C)).

Since log h’ is a-Holder, |9,(e)|? < const.£(a, b)?®, and the right hand
side is summable if and only if a > 1/2.
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Commentson WP ¢ Hand WP C S

It turns out that for h : T — T to even have diamond shear
coordinate, h must have left and right derivatives at all v € V. But
Weil-Petersson maps are allowed to have points of
non-differentiability.
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have derivative at oo, it does not have a diamond shear coordinate.
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Commentson WP ¢ Hand WP C S

It turns out that for h : T — T to even have diamond shear
coordinate, h must have left and right derivatives at all v € V. But
Weil-Petersson maps are allowed to have points of
non-differentiability.

Example. ¢ : R — R defined by ¢(x) = xlog |x| — x outside (-2, 2),
and smoothed out in-between. The function log ¢’(x) = log log ||
outside (—2,2) is in H'/?(R) so ¢ € WP(R). However since ¢ does not
have derivative at oo, it does not have a diamond shear coordinate.

Remark. However one can compute that for n > 1,

s¢((n20)) = n chgn + O(r712>

This is square summable, corresponding to the fact that WP(T) C S.
The proof that WP(T) C S uses a necessary condition for WP due to
C. Wu.
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Thank you for listening!
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