Circle homeomorphisms and shears with ℓ^2 structure

Catherine Wolfram (joint work with Dragomir Saric and Yilin Wang) March 7, 2023

Massachusetts Institute of Technology

Goal: compare circle homeomorphisms defined in terms of shears with ones from Teichmüller theory. Main result:

Theorem (Saric, Wang, W.)

$$\mathcal{C}^{1,\alpha} \subset \mathcal{H} \subset \mathsf{WP}(\mathbb{T}) \subset \mathcal{S}$$

if and only if $\alpha > 1/2$.

Goal: compare circle homeomorphisms defined in terms of shears with ones from Teichmüller theory. Main result:

Theorem (Saric, Wang, W.)

$$\mathcal{C}^{1,\alpha} \subset \mathcal{H} \subset \mathsf{WP}(\mathbb{T}) \subset \mathcal{S}$$

if and only if $\alpha > 1/2$.

Outline of the talk:

Goal: compare circle homeomorphisms defined in terms of shears with ones from Teichmüller theory. Main result:

Theorem (Saric, Wang, W.)

$$\mathcal{C}^{1,\alpha} \subset \mathcal{H} \subset \mathsf{WP}(\mathbb{T}) \subset \mathcal{S}$$

if and only if $\alpha > 1/2$.

Outline of the talk:

· Shears and shear coordinates for circle homeomorphisms

Goal: compare circle homeomorphisms defined in terms of shears with ones from Teichmüller theory. Main result:

Theorem (Saric, Wang, W.)

$$\mathcal{C}^{1,\alpha} \subset \mathcal{H} \subset \mathsf{WP}(\mathbb{T}) \subset \mathcal{S}$$

if and only if $\alpha > 1/2$.

Outline of the talk:

- · Shears and shear coordinates for circle homeomorphisms
- Definitions of the Weil-Petersson class and other circle homeomorphisms

Goal: compare circle homeomorphisms defined in terms of shears with ones from Teichmüller theory. Main result:

Theorem (Saric, Wang, W.)

$$\mathcal{C}^{1,\alpha} \subset \mathcal{H} \subset \mathsf{WP}(\mathbb{T}) \subset \mathcal{S}$$

if and only if $\alpha > 1/2$.

Outline of the talk:

- · Shears and shear coordinates for circle homeomorphisms
- Definitions of the Weil-Petersson class and other circle homeomorphisms
- Look at circle homeomorphisms with finitely supported shears to motivate the definition of diamond shear coordinates
- Some ideas of proof

Goal: compare circle homeomorphisms defined in terms of shears with ones from Teichmüller theory. Main result:

Theorem (Saric, Wang, W.)

$$\mathcal{C}^{1,\alpha} \subset \mathcal{H} \subset \mathsf{WP}(\mathbb{T}) \subset \mathcal{S}$$

if and only if $\alpha > 1/2$.

Outline of the talk:

- · Shears and shear coordinates for circle homeomorphisms
- Definitions of the Weil-Petersson class and other circle homeomorphisms
- Look at circle homeomorphisms with finitely supported shears to motivate the definition of diamond shear coordinates
- · Some ideas of proof

See preprint at arXiv:2211.11497 for more details and references!

Shears and shear coordinates

Shear in terms of cross ratio

The cross ratio of four points a, b, c, d along a circle or line is

$$\operatorname{cr}(a,b,c,d) = \frac{(b-a)(d-c)}{(c-b)(d-a)} \in \mathbb{R}.$$

The cross ratio is invariant under Möbius transformations and has the symmetry cr(a, b, c, d) = cr(c, d, a, b).

Example. $cr(\infty, -1, 0, \lambda) = \lambda$ for $\lambda \in (0, \infty)$.

Shear in terms of cross ratio

The cross ratio of four points a, b, c, d along a circle or line is

$$\operatorname{cr}(a,b,c,d) = \frac{(b-a)(d-c)}{(c-b)(d-a)} \in \mathbb{R}.$$

The cross ratio is invariant under Möbius transformations and has the symmetry cr(a, b, c, d) = cr(c, d, a, b).

Example.
$$cr(\infty, -1, 0, \lambda) = \lambda$$
 for $\lambda \in (0, \infty)$.

Definition. The *shear* of a quadrilateral Q with vertices $a,b,c,d\in\mathbb{T}$ along its diagonal e=(a,c) is defined

$$s(Q, e) = \log cr(a, b, c, d).$$

Shear in terms of hyperbolic length

The shear s(Q, e) can also be computed as (signed) hyperbolic length:

$$s(Q,e) = \pm d_{hyp}(m_b(e), m_d(e)).$$

Here $m_b(e)$ is the intersection of the geodesic through b perpendicular to e and $m_d(e)$ is the intersection of the geodesic through d perpendicular to e.

The shear s(Q, e) measures how the two triangles on either side of e are glued together to construct Q.

Farey tessellation

 $\mathcal{F}=(V,E)$ tessellation of \mathbb{D} starting from $\tau_0=\{-1,i,1\}$ generated by hyperbolic reflections. Vertices $V=\mathbb{T}\cap\mathbb{Q}^2$. The dual tree \mathcal{F}^* (where each triangle corresponds to a vertex, etc) is a trivalent tree.

Farey tessellation

 $\mathcal{F}=(V,E)$ tessellation of \mathbb{D} starting from $\tau_0=\{-1,i,1\}$ generated by hyperbolic reflections. Vertices $V=\mathbb{T}\cap\mathbb{Q}^2$. The *dual tree* \mathcal{F}^* (where each triangle corresponds to a vertex, etc) is a trivalent tree.

Conjugating to \mathbb{H} by a Möbius transformation sending $\{-1, \mathbf{i}, 1\} \mapsto \{0, 1, \infty\}$, V is sent to \mathbb{Q} . There is an edge $(p/q, r/s) \in E$ if and only if pr - qs = 1, and tessellation is invariant under the action of $PSL(2, \mathbb{Z})$ action.

4 / 22

Farey tessellation in $\ensuremath{\mathbb{D}}$ and shears

The Farey quad Q_e around $e \in E$ is the pair of triangles in \mathcal{F} with diagonal e.

Since ${\mathcal F}$ is generated by reflection, in terms of shears

$$s(Q_e, e) = 0 \quad \forall e \in E.$$

Tessellation from homeomorphism

A Möbius transformations is determined by its action on three points, so

$$\mathsf{Homeo}^+(\mathbb{T})/\mathsf{M\"ob}\cong\{h\in\mathsf{Homeo}^+(\mathbb{T}):h\;\mathsf{fixes}\;\pm 1,\mathfrak{i}\}.$$

Given a homeomorphism h fixing ± 1 , i, we can define a tessellation $h(\mathcal{F})$ which contains the triangle τ_0 and has vertices h(V) and edges

Shear coordinates

Definition. If h is a homeomorphism, its *shear coordinate* $s_h : E \to \mathbb{R}$ is

Remark. Not all functions $s: E \to \mathbb{R}$ encode homeomorphisms. (There exist shear functions where the image of V is not dense.)

Circle homeomorphisms

Quasisymmetric homemorphisms $QS(\mathbb{T})$

A map $f:\mathbb{D}\to\mathbb{D}$ is quasiconformal if f solves the Beltrami equation

$$f_{\bar{z}} = \mu f_z,$$

for some Beltrami coefficient μ with $||\mu||_{\infty} <$ 1.

Quasisymmetric homemorphisms $QS(\mathbb{T})$

A map $f: \mathbb{D} \to \mathbb{D}$ is quasiconformal if f solves the Beltrami equation

$$f_{\bar{z}} = \mu f_z,$$

for some Beltrami coefficient μ with $||\mu||_{\infty} < 1$.

A homeomorphism $h: \mathbb{T} \to \mathbb{T}$ is *quasisymmetric* if and only if it is the boundary value of a quasiconformal map of \mathbb{D} .

Quasisymmetric homemorphisms $QS(\mathbb{T})$

A map $f: \mathbb{D} \to \mathbb{D}$ is quasiconformal if f solves the Beltrami equation

$$f_{\bar{z}} = \mu f_z,$$

for some Beltrami coefficient μ with $||\mu||_{\infty} < 1$.

A homeomorphism $h: \mathbb{T} \to \mathbb{T}$ is *quasisymmetric* if and only if it is the boundary value of a quasiconformal map of \mathbb{D} .

Shears for quasisymmetric maps are totally classified (Saric). One model of *universal Teichmüller space* is $QS(\mathbb{T})/M\ddot{o}b$, where $M\ddot{o}b = PSU(1,1)$ is the Möbius transformations preserving the disk.

Weil-Petersson homeomorphisms $WP(\mathbb{T})$

Weil-Petersson Teichmüller space $WP(\mathbb{T})/M\"{o}b$ is a subspace of universal Teichmüller space that has received a lot of interest lately. The class now has at least 26 definitions, often with L^2 structure.

Weil-Petersson homeomorphisms $WP(\mathbb{T})$

Weil-Petersson Teichmüller space WP(\mathbb{T})/Möb is a subspace of universal Teichmüller space that has received a lot of interest lately. The class now has at least 26 definitions, often with L^2 structure.

Definition 1. A homeomorphism $h: \mathbb{T} \to \mathbb{T}$ is Weil-Petersson if *there* exists an extension $f: \mathbb{D} \to \mathbb{D}$ such that:

- f is quasiconformal, i.e. f solves $f_{\overline{z}} = \mu f_z$ for μ with $||\mu||_{\infty} < 1$.
- The Beltrami coefficient μ is in L^2 for the hyperbolic metric on the disk, i.e.

$$\int_{\mathbb{D}} \frac{|\mu(z)|^2}{(1-|z|^2)^2} \, \mathrm{d}A(z) < \infty.$$

Weil-Petersson homeomorphisms $WP(\mathbb{T})$

Weil-Petersson Teichmüller space WP(\mathbb{T})/Möb is a subspace of universal Teichmüller space that has received a lot of interest lately. The class now has at least 26 definitions, often with L^2 structure.

Definition 1. A homeomorphism $h: \mathbb{T} \to \mathbb{T}$ is Weil-Petersson if *there* exists an extension $f: \mathbb{D} \to \mathbb{D}$ such that:

- f is quasiconformal, i.e. f solves $f_{\overline{z}} = \mu f_z$ for μ with $||\mu||_{\infty} < 1$.
- The Beltrami coefficient μ is in L^2 for the hyperbolic metric on the disk, i.e.

$$\int_{\mathbb{D}} \frac{|\mu(z)|^2}{(1-|z|^2)^2} \, \mathrm{d}A(z) < \infty.$$

Definition 2 (Shen). A homoemorphism h is Weil-Petersson if and only if it is absolutely continuous and $\log h' \in H^{1/2}$, i.e.

$$\iint_{\mathbb{T}\times\mathbb{T}} \left| \frac{\log h'(x) - \log h'(y)}{x - y} \right|^2 \mathrm{d}x \mathrm{d}y < \infty.$$

Weil-Petersson and Hölder classes

We define Hölder classes

$$\mathcal{C}^{1,\alpha} = \{h : \mathbb{T} \to \mathbb{T} : \log h' \text{ is } \alpha\text{-H\"older}\}.$$

Weil-Petersson and Hölder classes

We define Hölder classes

$$\mathcal{C}^{1,\alpha} = \{h : \mathbb{T} \to \mathbb{T} : \log h' \text{ is } \alpha\text{-H\"older}\}.$$

Corollary (of the $H^{1/2}$ characterization of WP). The inclusion $\mathcal{C}^{1,\alpha} \subset \operatorname{WP}(\mathbb{T})$ holds if and only if $\alpha > 1/2$.

Weil-Petersson and Hölder classes

We define Hölder classes

$$\mathcal{C}^{1,\alpha} = \{h : \mathbb{T} \to \mathbb{T} : \log h' \text{ is } \alpha\text{-H\"older}\}.$$

Corollary (of the $H^{1/2}$ characterization of WP). The inclusion $\mathcal{C}^{1,\alpha} \subset \mathrm{WP}(\mathbb{T})$ holds if and only if $\alpha > 1/2$.

If $\log h'$ is α -Hölder, then

$$\iint_{\mathbb{T}\times\mathbb{T}} \left| \frac{\log h'(x) - \log h'(y)}{x - y} \right|^2 \mathrm{d}x \mathrm{d}y \le \mathrm{const.} \iint_{\mathbb{T}\times\mathbb{T}} |x - y|^{2\alpha - 2} \, \mathrm{d}x \mathrm{d}y,$$

which is finite if and only if $2\alpha - 2 > -1$ hence if and only if $\alpha > 1/2$.

We define the set of square summable shear functions

$$\mathcal{S} = \{ s : E \to \mathbb{R} : \sum_{e \in E} s(e)^2 < \infty \}$$

We define the set of square summable shear functions

$$S = \{ s : E \to \mathbb{R} : \sum_{e \in E} s(e)^2 < \infty \}$$

Question. How close is S to WP(\mathbb{T})?

We define the set of square summable shear functions

$$\mathcal{S} = \{ s : E \to \mathbb{R} : \sum_{e \in E} s(e)^2 < \infty \}$$

Question. How close is S to WP(\mathbb{T})?

Turns out S is "far" from (much bigger than) WP(\mathbb{T}), and this can be seen by looking at circle homemorphisms with finitely supported shears.

We define the set of square summable shear functions

$$S = \{ s : E \to \mathbb{R} : \sum_{e \in E} s(e)^2 < \infty \}$$

Question. How close is S to WP(\mathbb{T})?

Turns out S is "far" from (much bigger than) WP(\mathbb{T}), and this can be seen by looking at circle homemorphisms with finitely supported shears.

This will motivate the definition of diamond shear coordinates, and the space \mathcal{H} (square summable diamond shears), which we show is much closer to WP(\mathbb{T}).

Circle homeomorphisms with finitely supported shears

Finitely supported is piecewise Möbius

A shear function $s: E \to \mathbb{R}$ is *finitely supported* if $s(e) \neq 0$ for only finitely many $e \in E$.

A finitely supported shear function is always induced by a piecewise Möbius circle homeomorphism with "breakpoints" in the vertices V of \mathcal{F} .

Finitely supported shears and Weil-Petersson

For $v \in V$, fan(v) is the edges $e \in E$ incident to v.

Lemma. If $h: \mathbb{T} \to \mathbb{T}$ has $s_h: E \to \mathbb{R}$ finitely supported, TFAE:

- 1. *h* is Weil Petersson;
- 2. h is $C^{1,1}$ with breakpoints in V;
- 3. The shear function s_h satisfies the finite balance condition, i.e. for all $v \in V$, $\sum_{e \in fan(v)} s(e) = 0$.

Note: The shear function $s: E \to \mathbb{R}$ supported on one edge is *not* WP.

Definition of diamond shear

Definition. Fix $e \in E$ (with dual edge e^*), and let e_1, e_2, e_3, e_4 be the edges around Q_e . The *diamond shear* basis element Δ_e corresponds to the shear function with $s(e_1) = s(e_3) = +1$, $s(e_2) = s(e_4) = -1$, and all other shears 0.

 Δ_e is the shear coordinate of a piecewise Möbius map with 4 pieces.

Definition. If a homeomorphism h has a shear coordinate $s: E \to \mathbb{R}$ such that $s = \sum_{e^* \in E^*} \vartheta(e^*) \Delta_e$ then h has diamond shear coordinate $\vartheta: E^* \to \mathbb{R}$.

Note: not all shear functions can be written as diamond shears.

Finitely supported diamond shears and Weil-Petersson

Lemma. If h has s_h finitely supported, then h is Weil-Petersson if and only if h has a diamond shear coordinate.

Proof sketch. "Pruning the tree." By the previous Lemma, *h* is Weil-Petersson if and only if *s_h* satisfies the finite balanced condition.

Definition of ${\cal H}$

Not all shear functions can be written as diamond shears. We let $\mathcal{P} \subset \mathbb{R}^E$ be the subset of shear functions s such that s can be written in terms of diamond shear coordinates ϑ , $\Psi : \mathcal{P} \to \mathbb{R}^{\mathbb{E}^*}$ sends $s \mapsto \vartheta$.

Definition. The set of square summable diamond shears is

$$\mathcal{H} = \{ s \in \mathcal{P} : \vartheta = \Psi(s), \sum_{e^* \in E^*} \vartheta(e^*)^2 < \infty \}.$$

Definition of ${\cal H}$

Not all shear functions can be written as diamond shears. We let $\mathcal{P} \subset \mathbb{R}^E$ be the subset of shear functions s such that s can be written in terms of diamond shear coordinates ϑ , $\Psi : \mathcal{P} \to \mathbb{R}^{\mathbb{E}^*}$ sends $s \mapsto \vartheta$.

Definition. The set of square summable diamond shears is

$$\mathcal{H} = \{ s \in \mathcal{P} : \vartheta = \Psi(s), \sum_{e^* \in E^*} \vartheta(e^*)^2 < \infty \}.$$

Remark. From the condition for a shear function to encode a quasisymmetric homeomorphism, it follows that

$$\mathcal{H}\subset QS(\mathbb{T}).$$

In particular, all $s \in \mathcal{H}$ induce homeomorphisms.

Theorem (SWW).

$$\mathcal{C}^{1,\alpha}\subset\mathcal{H}\subset\mathsf{WP}(\mathbb{T})\subset\mathcal{S}$$

if and only if $\alpha > 1/2$.

Theorem (SWW).

$$\mathcal{C}^{1,\alpha} \subset \mathcal{H} \subset \mathsf{WP}(\mathbb{T}) \subset \mathcal{S}$$

if and only if $\alpha > 1/2$.

The space WP(\mathbb{T}) has a metric (the Weil-Petersson metric), and \mathcal{H} has a natural topology coming from its ℓ^2 structure.

Theorem (SWW).

$$\mathcal{C}^{1,\alpha} \subset \mathcal{H} \subset \mathsf{WP}(\mathbb{T}) \subset \mathcal{S}$$

if and only if $\alpha > 1/2$.

The space WP(\mathbb{T}) has a metric (the Weil-Petersson metric), and \mathcal{H} has a natural topology coming from its ℓ^2 structure.

Theorem (SWW). Suppose that $h, (h_n)_{n\geq 1} \in \mathcal{H}$ with diamond shear coordinates ϑ, ϑ_n respectively. If

$$\lim_{n\to\infty}\sum_{e^*\in F^*}(\vartheta_n(e^*)-\vartheta(e^*))^2=0$$

then h_n converges to h in the Weil-Petersson metric.

Theorem (SWW).

$$\mathcal{C}^{1,\alpha} \subset \mathcal{H} \subset \mathsf{WP}(\mathbb{T}) \subset \mathcal{S}$$

if and only if $\alpha > 1/2$.

The space WP(\mathbb{T}) has a metric (the Weil-Petersson metric), and \mathcal{H} has a natural topology coming from its ℓ^2 structure.

Theorem (SWW). Suppose that $h, (h_n)_{n\geq 1} \in \mathcal{H}$ with diamond shear coordinates ϑ, ϑ_n respectively. If

$$\lim_{n\to\infty}\sum_{e^*\in F^*}(\vartheta_n(e^*)-\vartheta(e^*))^2=0$$

then h_n converges to h in the Weil-Petersson metric.

Corollary. Piecewise-Möbius, C^1 maps with rational breakpoints are dense in \mathcal{H} and WP(\mathbb{T}).

Proof ideas

Proof ideas: $\mathcal{H} \subset WP$

Given $h \in \mathcal{H}$, we explicitly construct an extension $f : \mathbb{D} \to \mathbb{D}$ and show it is quasiconformal and has Beltrami coefficient $\mu \in L^2(\mathbb{D}, d_{hyp})$.

Proof ideas: $\mathcal{H} \subset WP$

Given $h \in \mathcal{H}$, we explicitly construct an extension $f : \mathbb{D} \to \mathbb{D}$ and show it is quasiconformal and has Beltrami coefficient $\mu \in L^2(\mathbb{D}, d_{hyp})$.

The dual tree \mathcal{F}^* subdivides \mathbb{D} into *cells* $\{C_v : v \in V\}$. Based on a construction by Kahn and Markovic, we construct f extending h that sends cells to cells.

- **Step 1.** Extend over \mathcal{F}^* by hyperbolic stretching.
- **Step 2.** Extend over a single cell C_v , $v \in V$.
- Step 3. Stitch cells together again.

Proof ideas: extending over a cell C_{ν}

For any $v \in V$, conjugating by appropriate Möbius transformations $\mathbb{H} \to \mathbb{D}$, we can send $h: \mathbb{T} \to \mathbb{T}$ to $\varphi: \mathbb{R} \to \mathbb{R}$ fixing ∞ and C_v to C_∞ . Suffices to explain how to extend over C_∞ .

Proof ideas: extending over a cell C_v

For any $v \in V$, conjugating by appropriate Möbius transformations $\mathbb{H} \to \mathbb{D}$, we can send $h: \mathbb{T} \to \mathbb{T}$ to $\varphi: \mathbb{R} \to \mathbb{R}$ fixing ∞ and C_v to C_∞ . Suffices to explain how to extend over C_∞ .

Extension ψ (conjugate to f) of φ sends x + iu(x) (boundary of C_{∞}) by hyperbolic stretching to the curve $\alpha(x) + i\beta(x)$. We extend over the rest of the cell on vertical lines:

$$\psi(x+iy) = \alpha(x) + i(\beta(x) - u(x) + y) \qquad x+iy \in C_{\infty}.$$

Proof ideas: $C^{1,\alpha} \subset \mathcal{H}$

Analytic definition of diamond shears. If h has a diamond shear coordinate ϑ_h and $e = (a, b) \in E$, then

$$\vartheta_h(e) = \frac{1}{2} \log h'(a)h'(b) - \log \frac{h(a) - h(b)}{a - b}.$$

Summability of Farey lengths. Let $\ell(a, b)$ be the length of the shorter circular arc from a to b.

$$\sum_{(a,b)\in E}\ell(a,b)^r<\infty$$

if and only if r > 1.

Proof ideas: $C^{1,\alpha} \subset \mathcal{H}$

Analytic definition of diamond shears. If h has a diamond shear coordinate ϑ_h and $e = (a, b) \in E$, then

$$\vartheta_h(e) = \frac{1}{2} \log h'(a)h'(b) - \log \frac{h(a) - h(b)}{a - b}.$$

Summability of Farey lengths. Let $\ell(a,b)$ be the length of the shorter circular arc from a to b.

$$\sum_{(a,b)\in E}\ell(a,b)^r<\infty$$

if and only if r > 1.

Proof sketch. Suppose $h \in \mathcal{C}^{1,\alpha}$. By the mean value theorem*, there is $c \in (a,b)$ so that

$$\vartheta_h(e) = \frac{1}{2}(\log h'(a) - \log h'(c)) + \frac{1}{2}(\log h'(b) - \log h'(c)).$$

Since $\log h'$ is α -Hölder, $|\vartheta_h(e)|^2 \leq \text{const.} \ell(a,b)^{2\alpha}$, and the right hand side is summable if and only if $\alpha > 1/2$.

Comments on WP $\not\subset \mathcal{H}$ and WP $\subset \mathcal{S}$

It turns out that for $h: \mathbb{T} \to \mathbb{T}$ to even have diamond shear coordinate, h must have left and right derivatives at all $v \in V$. But Weil-Petersson maps are allowed to have points of non-differentiability.

Comments on WP $\not\subset \mathcal{H}$ and WP $\subset \mathcal{S}$

It turns out that for $h: \mathbb{T} \to \mathbb{T}$ to even have diamond shear coordinate, h must have left and right derivatives at all $v \in V$. But Weil-Petersson maps are allowed to have points of non-differentiability.

Example. $\varphi: \mathbb{R} \to \mathbb{R}$ defined by $\varphi(x) = x \log |x| - x$ outside (-2,2), and smoothed out in-between. The function $\log \varphi'(x) = \log \log |x|$ outside (-2,2) is in $H^{1/2}(\mathbb{R})$ so $\varphi \in \mathsf{WP}(\mathbb{R})$. However since φ does not have derivative at ∞ , it does not have a diamond shear coordinate.

Comments on WP $\not\subset \mathcal{H}$ and WP $\subset \mathcal{S}$

It turns out that for $h: \mathbb{T} \to \mathbb{T}$ to even have diamond shear coordinate, h must have left and right derivatives at all $v \in V$. But Weil-Petersson maps are allowed to have points of non-differentiability.

Example. $\varphi: \mathbb{R} \to \mathbb{R}$ defined by $\varphi(x) = x \log |x| - x$ outside (-2,2), and smoothed out in-between. The function $\log \varphi'(x) = \log \log |x|$ outside (-2,2) is in $H^{1/2}(\mathbb{R})$ so $\varphi \in \mathrm{WP}(\mathbb{R})$. However since φ does not have derivative at ∞ , it does not have a diamond shear coordinate.

Remark. However one can compute that for n > 1,

$$s_{\varphi}((n,\infty)) = \frac{1}{n \log n} + O\left(\frac{1}{n^2}\right).$$

This is square summable, corresponding to the fact that $WP(\mathbb{T}) \subset \mathcal{S}$. The proof that $WP(\mathbb{T}) \subset \mathcal{S}$ uses a necessary condition for WP due to C. Wu.

Thank you for listening!

